Progress in Ultrafast Photonics
نویسندگان
چکیده
Recent progress in ultrafast photonics is reviewed with special emphasis on the research and development activities in Japanese research institutions in the field of optical communication and related measurement technologies. After summarizing the physical natures of ultrashort optical pulses, selected topics are reviewed on such as (1) ultrahigh-bit-rate optical communication employing the combination of optical time division multiplexing (OTDM) and wavelength division multiplexing (WDM), (2) optical components for ultrafast photonics with emphasis on all optical switches including semiconductor optical amplifiers, cascaded second order frequency converters, semiconductor saturable absorber switches, organic dye saturable absorber switches and bistable semiconductor lasers, (3) microwave photonics, emphasizing millimeterwave/photonic communication technologies, and (4) high-speed optical measurements featuring both compact femtosecond pulse source development and rf magnetic field imaging. Some comments on the future prospect of ultrafast photonics are also given. It is concluded that in order to bring the powerful and versatile capability of ultrafast photonics into the real world, further collaboration between photonics specialists and production engineers/information specialists is strongly desired.
منابع مشابه
Broadband and enhanced nonlinear optical response of MoS2/graphene nanocomposites for ultrafast photonics applications
Due to their relatively high compatibility with specific photonic structures, strong light-matter interactions and unique nonlinear optical response, two-dimensional (2D) materials, such as graphene and transition metal dichalcogenides, are attractive for ultrafast photonics applications. Here, we fabricate MoS2/graphene nanocomposites by a typical hydrothermal method. In addition, we systemati...
متن کاملNanotube–Polymer Composites for Ultrafast Photonics
Polymer composites are one of the most attractive near-termmeans to exploit the unique properties of carbon nanotubes and graphene. This is particularly true for composites aimed at electronics and photonics, where a number of promising applications have already been demonstrated. One such example is nanotube-based saturable absorbers. These can be used as all-optical switches, optical amplifie...
متن کاملUltrafast laser inscription: an enabling technology for astrophotonics.
The application of photonics to astronomy offers major advantages in the area of highly-multiplexed spectroscopy, especially when applied to extremely large telescopes. These include the suppression of the near-infrared night-sky spectrum [J. Bland-Hawthorn et al, Opt. Express 12, 5902 (2004), S. G. Leon-Saval et al, Opt. Lett. 30, 2545 (2005)] and the miniaturisation of spectrographs so that t...
متن کاملDispersive Fourier Transformation for Versatile Microwave Photonics Applications
Dispersive Fourier transformation (DFT) maps the broadband spectrum of an ultrashort optical pulse into a time stretched waveform with its intensity profile mirroring the spectrum using chromatic dispersion. Owing to its capability of continuous pulse-by-pulse spectroscopic measurement and manipulation, DFT has become an emerging technique for ultrafast signal generation and processing, and hig...
متن کاملMagneto-Plasmonics and Resonant Interaction of Light with Dynamic Magnetisation in Metallic and All-Magneto-Dielectric Nanostructures
A significant interest in combining plasmonics and magnetism at the nanoscale gains momentum in both photonics and magnetism sectors that are concerned with the resonant enhancement of light-magnetic-matter interaction in nanostructures. These efforts result in a considerable amount of literature, which is difficult to collect and digest in limited time. Furthermore, there is insufficient excha...
متن کامل